
Linux Wi-Fi open source drivers
-mac80211, ath9k/ath5k-

Daniel Camps Mur

1. General Driver Overview

hostapd

wpa_supplicant

1. Transmission Path: kernelmac80211ath9k

ieee80211_subif_start_xmit (tx.c):
-Adds the 802.11 header.
-Initializes transmission time in devtrans_start

ieee80211_xmit (tx.c):
-Makes headroom for encryption

ieee80211_set_qos_header (wme.c):
-Sets TID in Wi-Fi header according to
skbpriority

ieee80211_tx (tx.c):
-Obtains the proper transmission queue.
-Prepares transmission
-If the packet can not be transmitted, it is
queued timestamp queue entry.
-Queues are maintained per sub-interface, in
the structure qdata[4] in
ieee80211_sub_if_data
-Calls drv_tx() to pass the frame to the actual
driver for transmission

skb_get_queue_mapping (?.c):

ieee80211_tx_prepare (tx.c):

struct qdata(ieee80211_i.h):
-enqueued
-max_enqueued
-ewma tserv_ns_avg (can this be useful?)

invoke_tx_handlers(tx.c):
-In an AP checks if the data has to be to be
buffered
-Many other stuff …

drv_tx() (driver-ops.h):
-This is the entry point to the actual driver!
-It is called for each packet to be transmitted.
-Receives struct ieee80211_local
-Receives the sk_buff (the data)

struct ieee80211_local:
-This struct contains information about the real
hardware, and is created when the interface is first added
(ieee80211_register_hw() in main.c)
- This data structure is created from the structure
ieee80211_hw in mac80211.h
-This data structure probably allows the hardware driver
to register with mac80211 the proper function to be
called by drv_tx().
- The driver and mac80211 communicate through this
structure.

Kernel hands the packet to the virtual interface

1a. Transmission Path: ath9khardware

-The ath9k driver registers the functions to interface with mac80211 in struct
ieee80211_ops ath9k_ops. The input of this struct is then loaded in mac80211 using the
function ieee80211_alloc_hw() in main.c of mac80211.
- The function interfacing with drv_tx() is ath9k_tx()
-The common data also contains other info like the number of hw queues

drv_tx() in mac80211

ath9k_tx() (main.c):
-Loads details of the hardware in struct
ath_softc.
-Updates the PM bit (not set by mac80211).
-Wakes up hardware if it was sleeping.
-Uses data struct ath_tx_control to track the
status of the transmission
-Starts transmission in ath_tx_start()

ath9k_ps_wakeup() (x.c):

ath_tx_start() (xmit.c):
-Receives a pointer to an struct
ath_tx_control containing a pointer to the
queue that contains the frame?
-If the destination is HT capable tries
aggregation.

struct ath_txq(ath9k.h):
-Contains the equivalent mac80211 queue
-Contains the hw queue number
-Actual queue.

struct ath_tx (ath9k.h):
struct ath_txq txq[ATH9K_NUM_TX_QUEUES];
struct ath_txq *txq_map[WME_NUM_AC];
-Contains the hw transmission queues. Ath9k has
10 hw tx queues.
-Points to the mac80211 tx queues

struct ath_softc (ath9k.h):
struct ieee80211_hw *hw;
struct device *dev;
bool ps_enabled;
struct ath_config config;
struct ath_rx rx;
struct ath_tx tx;
struct ath_beacon beacon;

ath_tx_send_ampdu() (xmit.c): ath_tx_send_normal() (xmit.c):
-Receives as argument a txq
-Selects the data rate
-Adds the data to be transmitted in the txq ath_tx_txqaddbuf

ath_tx_txqaddbuf() (xmit.c):
-Receives as parameter a txq, then inserts the frame into the outbound
list, and sends it out to the hardware. The hardware physical queues
seem to support only 8 frames!
-If the packet can not be inserted in the physical queue then it is held
here.

ath9k_hw_txstart() (mac.c):
-Writes the proper register in the hardware to trigger the transmission
in a given queue.
-The hardware is the one performing the CSMA-CA according to the
configured parameters on that queue.

1b. Transmission Path: ath5khardware
-The ath5k driver registers the functions to interface with mac80211 in struct
ieee80211_ops ath5k_hw_ops in mac80211-ops.c. The input of this struct is then loaded
in mac80211 using the function ieee80211_alloc_hw() in main.c of mac80211.
- The function interfacing with drv_tx() is ath5k_tx() in mac80211-ops.c

drv_tx() in mac80211

ath5k_tx() in mac80211-ops.c
-Receives the skb to be transmitted.
-Finds the appropriate hw queue for that skb

ath5k_tx_queue() in base.c
-If the queue is already at its maximum size (max is 50 pkts) it
sends a signal back to mac80211 so that this stops his queues
(ieee80211_stop_queue). It also may drop the packet
-Copies the data to be transmitted in the txqueues. struct
ath5k_buf represents a single queued frame (buffer). ieee80211_stop_queue() in ?

ath5k_txbuf_setup() in base.c
-Obtains data rate for this transmission
-Prepare for transmission

ah_setup_tx_desc() in desc.c

ath5k_hw_setup_mrr_tx_desc() in desc.c

ath5k_hw_start_tx_dma() in dma.c
-Starts a transmission in the hw.
-My understanding is that the hw may already be trying to
transmit other frames that were previously submitted.

AR5K_REG_WRITE_Q() in dma.c
-Writes a certain register in the hw, so that the
transmission on a certain queue starts

ath5k_tasklet_tx() in base.c
-Tasklet that is called when the following interrupts
happen: AR5K_INT_TXOK, AR5K_INT_TXDESC,
AR5K_INT_TXERR, AR5K_INT_TXEOL

ath5k_tx_processq() in base.c

ath5k_tx_frame_completed() in base.c
-Check a timestamp here ?

Ieee80211_tx_status() iin mac80211

1a. Reception Path: hardwareath9k

When receiving a packet, and also for other reasons, the
hardware sends an interruption that ath9k has previously
registered. The function in charge of handling the
interruption seems to be irqreturn_t ath_isr in main.c. This
function discovers the type of interruption and asks the
kernel to schedule the execution of a tasklet,
ath9k_tasklet in main.c. This function in turn calls the the
receive tasklet ath_rx_tasklet()

ath_rx_tasklet (recv.c)
-Obtains the frame header
-Obtains the current tsf value
-Records info about received packet in struct
ieee80211_rx_status
-Insert received data in the receive buffer
-Creates a new skb to contain the received data
-Passes the skb to ieee80211_rx()
-Can we compute the airtime duration of the received
frame in this function, as “airtime = tsf - rxs->mactime” ?

struct ieee80211_rx_status (mac80211.h)
u64 mactime : value in microseconds of the
64-bit Time Synchronization Function (TSF)
timer when the first data symbol (MPDU)
arrived at the hardware.
enum ieee80211_band band;
int rate_idx;
unsigned int rx_flags; …

ath9k_rx_skb_preprocess (recv.c)
-Checks if the received data has CRC errors
and in that case drops it. However, crypto
errors are still passed up to mac80211
-Populates ath_rx_status

ath9k_rx_skb_postprocess (recv.c)
-Remove padding from the received header

struct ath_rx_status (mac.h)
u32 rs_tstamp; This is given by the
hardware and eventually carried on to
mactime in ieee80211_rx_status
u16 rs_datalen;
u8 rs_status;
u8 rs_phyerr;
int8_t rs_rssi;
u8 rs_keyix;
u8 rs_rate;
u8 rs_antenna;
…

ieee80211_rx() (mac80211 rx.c)
-This is the entry point to mac80211

struct ieee80211_hdr (include/linux/ieee80211.h)

1b. Reception Path: hardwareath5k

ath5k_tasklet_rx in base.c
-Receives the interruption that a new
frame has been received

ath5k_receive_frame_ok in base.c

ath5k_receive_frame in base.c
- rxs->mactime contains the time the first bit
was received in the air

ieee80211_rx() (mac80211 rx.c)
-This is the entry point to mac80211

1. Reception Path: mac80211kernel

ieee80211_rx() (mac80211 rx.c)
-Removes the radiotap header
-Parses QoS from header.
-Decides if this packet is addressed to this
interface or to another STA in the BSS
-Calls ieee80211_prepare_and_rx_handle()

ieee80211_parse_qos() (x.c):

ieee80211_prepare_and_rx_handle()
-Receives as input an ieee80211_rx_data
-Calls the rx handlers

ieee80211_rx_handlers(rx.c)
-Among other calls the following functions:
ieee80211_rx_h_decrypt
ieee80211_rx_h_check_more_data
ieee80211_rx_h_sta_process
ieee80211_rx_h_data
ieee80211_rx_h_ctrl
…

ieee80211_rx_h_sta_process() (rx.c):
-Updates the sta_info struct that contains
information about this station

ieee80211_rx_h_data() (rx.c):
-Removes the 802.11 header and passes
up the 802.3 frame

ieee80211_deliver_skb() (rx.c):
-Receives a frame with an Ethernet header
-Decides if the frame has to go up to the stack, or
must be reflected back to the wireless medium
(if we are an AP).

netif_receive_skb() (x.c):
-Delivers the skb to the local stack (kernel)

dev_queue_xmit() (x.c):
-Resends the skb to the wireless medium

struct ieee80211_rx_data (ieee80211_i.h)
struct sk_buff *skb;
struct ieee80211_local *local;
struct ieee80211_sub_if_data *sdata;
struct sta_info *sta;
struct ieee80211_key *key;
int queue ….

struct sta_info (sta_info.h):
-Info about this station, like:
-TX and RX statistics
-PS buffers if we are an AP
struct ieee80211_sta sta;

1. Beacon Tx path: from ath9k to mac80211

The hardware seems to be in charge of generating Beacon
interruption when the proper time comes, and then there
is a beacon tasklet defined to handle that interruption,
ath_beacon_tasklet

ath_beacon_tasklet (beacon.c):
-If the previous beacon is not out, do nothing
-Seems to implement on some Beacon time scheduling to
avoid Beaconing at the same time that other BSSs
-Generates the beacon with ath_beacon_generate
-Inserts the Beacon in the hardware beacon queue

ath9k_hw_txstart (mac.c):
-Writes a register to start the transmission in the
hardware

ath_beacon_generate (beacon.c):
-Gets a new Beacon from mac80211, ieee80211_beacon_get
-Sets the proper timestamp and SN in the Beacon
-This function seems a good candiate to modify a NoA
element in the Beacon!
-Updates TIM and DTIM, using ieee80211_get_buffered_bc
-Prepares transmission, ath_beacon_setup

ieee80211_beacon_get (mac80211.h in include/):
-Wrapper for ieee80211_beacon_get_tim()

ath_beacon_setup (beacon.c):
-Sets up the proper rate to use with the Beacon

ieee80211_beacon_get_tim (tx.c):
-Generates the beacon
- The actual beacon is contained within an structure called
struct ieee80211_if_ap associated to the interface (struct
ieee80211_sub_if_data.
-Adds the TIM with ieee80211_beacon_add_tim

ieee80211_add_beacon (mac80211 cfg.c):
-This function is called from the configuration interface
cfg80211 or wext
-Calls ieee80211_config_beacon that configures the beacon
based on given parameters

struct beacon parameters (/include/net/cfg80211.h)
u8 *head, *tail;
int interval, dtim_period;
int head_len, tail_len;
Contains pointers to the static parts before and after the
TIM

But where is the Beacon actually constructed ? This is done by hostapd, next …

1. Beacon set up: hostapd/wpa_supplicant

ieee802_11_set_beacon (beacon.c)
-This function allocates all the IEs in the HEAD and TAIL parts of the Beacon,
which then will be used by mac80211 to construct the Beacon and pass it
down to the driver.
-In P2P mode hostapd adds to the Beacon a P2P IE and calls the function
hostapd_eid_p2p_manage

hostapd_eid_p2p_manage (p2p_hostapd.c)
-This function builds the P2P IE that goes in the Beacon
-Right now the function only adds the P2P Manageability element within
the P2P IE
-We need to modify this function to also add a Notice of Absence
Element in the Beacon with one NoA Descriptor.
-Then in ath_beacon_generate() from ath9k we have to be able to
access the memory allocated to the NoA element and overwrite it with
the duration/interval values computed by our algorithm.

• hostpad creates all the STATIC template of the Beacon frame (i.e., SSID, supported rates,
…) and then passes it down to mac80211.

• The low level driver (ath9k) is the one in control of the DYNAMIC parts of the Beacon
(SNs, Timestamp, TIM).

p2p_build_presence_req (hostap/src/p2p.c)
-Build a presence request which is an Action frame that
includes a NoA IE

struct p2p_noa_desc (p2p_i.h)
u8 count_type;
u32 duration;
u32 interval;
u32 start_time;

• When including the NoA element in the Beacon, we should reuse the definition already
provided by hostap. Note that the current P2P implementation can already send a P2P
Presence Request frame which contains NoA descriptors.

p2p_add_noa (hostap/src/p2p_build.c)
-Adds an NoA element to a struct wpa_buf

1. Beacon Rx path: mac80211

struct struct ieee802_11_elems (ieee80211_i.h)
Contains all the Beacon IEs to be parsed
Add NoA element here! ieee802_11_parse_elems (util.c)

Parses the element in the received Beacon
Modify to also parse a NoA

ieee80211_rx_mgmt_beacon (mlme.c)
-Implements the logic of receiving a Beacon
-Receives the TIM and sets the WMM parameters
-Decides to generate a PS-Poll if necessary, ieee80211_send_pspoll
Modify to parse the received NoA

ieee80211_work_rx_queued_mgmt (work.c)
Processes pending received management frames

ieee80211_sta_rx_queued_mgmt (mlme.c)
Processes pending received management frames

ieee80211_iface_work (iface.c)
ieee80211_rx_handlers(rx.c)
-The interesting here is:
…
ieee80211_rx_h_mgmt
…

Same as any received frame, until ieee80211_rx_handlers

ieee80211_rx_h_mgmt (rx.c):
-Takes care of received mgmt frames
-Calls ieee80211_work_rx_mgmt (work.c) which calls
ieee80211_queue_work to scheduled th actual beacon
processing

ieee80211_queue_work(util.c)
-Adds work to be done in a workqueue
maintained in struct ieee80211_local

Somehow the work inserted in workqueue
gets done …

ieee80211_work_work (work.c)

ieee80211_work_init (work.c)

Enforce the tx suspension for the time indicated in the NoA. How ????
-Can we write to the AR_NAV register from software ?
-ieee80211_stop_queues (util.c) ?
-ieee80211_wake_queues (util.c) ?
-Can we reused the processing done for the quiet element? Seems
defined but not implemented …

