Linux Wi-Fi open source drivers
-mac80211, ath9k/ath5k-

1. General Driver Overview

userspace

n[80211 hostapd

cfg80211 wpa_supplicant

cfg80211 ops we x t

mac80211

leees0211 ops

iwlwifi other drivers

1. Transmission Path: kernel>mac80211—->ath9k

Kernel hands the packet to the virtual interface

v

ieee80211_subif_start_xmit (tx.c):
-Adds the 802.11 header.

-Initializes transmission time in dev—>trans_start

ieee80211_xmit (tx.c):
-Makes headroom for encryption

struct ieee80211_local:

-This struct contains information about the real
hardware, and is created when the interface is first added
(ieee80211_register_hw() in main.c)

- This data structure is created from the structure
ieee80211_hw in mac80211.h

-This data structure probably allows the hardware driver
to register with mac80211 the proper function to be
called by drv_tx().

- The driver and mac80211 communicate through this
structure.

ieee80211_set_qos_header (wme.c):

-Sets TID in Wi-Fi header according to
skb—>priority

ieee80211_tx (tx.c):

-Obtains the proper transmission queue.
-Prepares transmission

-If the packet can not be transmitted, it is
queued - timestamp queue entry.

-Queues are maintained per sub-interface, in
the structure gdata[4] in
ieee80211_sub_if_data

-Calls drv_tx() to pass the frame to the actual
driver for transmission

skb_get_queue_mapping (?.c):

ieee80211_tx_prepare (tx.c):

invoke_tx_handlers(tx.c):
-In an AP checks if the ddta has to be to be

y

drv_tx() (driver-ops.h):

-This is the entry point to the actual driver!
-It is called for each packet to be transmitted.
-Receives struct ieee80211_local

-Receives the sk_buff (the data)

buffered
-Many other stuff ...

struct gdata(ieee80211_ji.h):
-enqueued

-max_enqueued
-ewma tserv_ns_avg (cap this be useful?)

1a. Transmission Path: ath9k—>hardware

\

drv_tx() in mac80211 ﬁ—

ath9k_tx() (main.c):

-Loads details of the hardware in struct
ath_softc.

-Updates the PM bit (not set by mac80211).
-Wakes up hardware if it was sleeping.

-Uses data struct ath_tx_control to track the
status of the transmission

-Starts transmission in ath_tx_start()

-The ath9k driver registers

ieee80211_ops ath9k_ops. The input of this struct is then loaded in mac80211 using the
function ieee80211_alloc_hw() in main.c of mac80211.

- The function interfacing with drv_tx() is ath9k_tx()

-The common data also contains other info like the number of hw queues

the functions to interface with mac80211 in struct

ath9k_ps_wakeup() (x.c):

v

ath_tx_start() (xmit.c):

-Receives a pointer to an struct
ath_tx_control containing a pointer to the
queue that contains the frame?

-If the destination is HT capable tries
aggregation.

struct ath_softc (ath9k.h):
struct ieee80211_hw *hw;
struct device *dev;

bool ps_enabled;

struct ath_config config;
struct ath_rx rx;

struct ath_tx tx;

struct ath_beacon beacon;

struct ath_tx (ath9k.h):
struct ath_txq txq[ATH9K_NUM_TX_QUEUES];
struct ath_txq *txqg_map[WME_NUM_AC];

J -Contains the hw transmission queues. Ath9k has
10 hw tx queues.
-Points to the mac80211 tx queues

1

\4

Vv

struct ath_txq(ath9k.h):

-Contains the equivalent mac80211 queue
-Contains the hw queue number

-Actual queue.

ath_tx_send_ampdu() (xmit.c): ath_tx_send_normal() (xmit.c):

-Receives as argument a txq
-Selects the data rate
-Adds the data to be transmitted in the txq ath_tx_txqaddbuf

\7

ath_tx_txqaddbuf() (xmit.c):

-Receives as parameter a txq, then inserts the frame into the outbound
list, and sends it out to the hardware. The hardware physical queues

seem to support only 8 frames!

-If the packet can not be inserted in the physical queue then it is held

here.

ath9k_hw_txstart() (mac.c):

-Writes the proper register in the hardware to trigger the transmission
in a given queue.

-The hardware is the one performing the CSMA-CA according to the
configured parameters on that queue.

1b. Transmission Path: ath5k—=> hardware

-The ath5k driver registers the functions to interface with mac80211 in struct

drv_tx() in mac80211 z ieee80211_ops ath5k_hw_ops in mac80211-ops.c. The input of this struct is then loaded
- in mac80211 using the function ieee80211_alloc_hw() in main.c of mac80211.

- The function interfacing with drv_tx() is athSk_tx() in mac80211-ops.c

ath5k_tasklet_tx() in base.c
-Tasklet that is called when the following interrupts

-Recei the skb to be t itted.
-Fiicdesl\;iz a e Sro r;teeh\::nzr::]eior that skb happen: ARSK_INT_TXOK, ARSK_INT_TXDESC,
pprop g ARSK_INT_TXERR, ARSK_INT_TXEOL

ath5k_tx() in mac80211-ops.c

; :

ath5k_tx_queue() in base.c

th5k_t in base.
-If the queue is already at its maximum size (max is 50 pkts) it a _tx_processq() in base.c

sends a signal back to mac80211 so that this stops his queues
(ieee80211_stop_queue). It also may drop the packet

-Copies the data to be transmitted in the txqueues. struct
ath5k_buf represents a single queued frame (buffer). ieee80211_stop_queue() in ?

ath5k_tx_frame_completed() in base.c
-Check a timestamp here ?

_¢

leee80211_tx_status() iin mac80211

-Obtains data rate for this transmission
-Prepare for transmission

\V_I

ath5k_hw_start_tx_dma() in dma.c

-Starts a transmission in the hw.

-My understanding is that the hw may already be trying to
transmit other frames that were previously submitted.

LV

ARS5K_REG_WRITE_Q() in dma.c
-Writes a certain register in the hw, so that the
transmission on a certain queue starts

ath5k_txbuf_setup() in base.c ‘ ah_setup_tx_desc() in desc.c

ath5k_hw_setup_mrr_tx_desc() in desc.c

1a. Reception Path: hardware—=>ath9k

When receiving a packet, and also for other reasons, the
hardware sends an interruption that ath9k has previously
registered. The function in charge of handling the
interruption seems to be irqreturn_t ath_isr in main.c. This
function discovers the type of interruption and asks the
kernel to schedule the execution of a tasklet,
ath9k_tasklet in main.c. This function in turn calls the the
receive tasklet ath_rx_tasklet()

struct ieee80211_hdr (include/linux/ieee80211.h)

struct ieee80211_rx_status (mac80211.h)
u64 mactime : value in microseconds of the
64-bit Time Synchronization Function (TSF)
timer when the first data symbol (MPDU)
arrived at the hardware.

enum ieee80211_band band;

int rate_idx;

unsigned int rx_flags; ...

ath_rx_tasklet (recv.c)

-Obtains the frame header

-Obtains the current tsf value

-Records info about received packet in struct
ieee80211_rx_status

-Insert received data in the receive buffer

-Creates a new skb to contain the received data

-Passes the skb to ieee80211_rx()

-Can we compute the airtime duration of the received
frame in this function, as “airtime = tsf - rxs->mactime” ?

ath9k_rx_skb_preprocess (recv.c)
-Checks if the received data has CRC errors

and in that case drops it. However, crypto
errors are still passed up to mac80211
-Populates ath_rx_status

ath9k_rx_skb_postprocess (recv.c)
-Remove padding from the received header

ieee80211_rx() (mac80211 rx.c)
-This is the entry point to mac80211

struct ath_rx_status (mac.h)

u32 rs_tstamp; This is given by the
hardware and eventually carried on to
mactime in ieee80211 rx_status
ul6 rs_datalen;

u8 rs_status;

u8 rs_phyerr;

int8_trs_rssi;

u8 rs_keyix;

u8rs_rate;

u8rs_antenna;

1b. Reception Path: hardware—>ath5k

ath5k_tasklet_rx in base.c
-Receives the interruption that a new
frame has been received

<«] ath5k_receive_frame_ok in base.c

ath5k_receive_frame in base.c
- rxs->mactime contains the time the first bit
was received in the air

ieee80211_rx() (mac80211 rx.c)
-This is the entry point to mac80211

1. Reception Path: mac80211—>kernel

|

ieee80211_parse_qos() (x.c):

ieee80211_rx() (mac80211 rx.c)

-Removes the radiotap header

-Parses QoS from header.

-Decides if this packet is addressed to this
interface or to another STA in the BSS
-Calls ieee80211_prepare_and_rx_handle()

ieee80211_prepare_and_rx_handle()
-Receives as input an ieee80211_rx_data
-Calls the rx handlers

J

struct ieee80211_rx_data (ieee80211_i.h)
struct sk_buff *skb;

struct ieee80211_local *local;

struct ieee80211_sub_if data *sdata;
struct sta_info *sta;

struct ieee80211_key *key;

int queue

ieee80211_rx_handlers(rx.c)

-Among other calls the following functions:
ieee80211 rx_h_decrypt

ieee80211 rx_h_check_more_data
ieee80211 rx_h_sta_process

ieee80211 rx_h_data

ieee80211 rx_h_ctrl

struct sta_info (sta_info.h):

ieee80211_rx_h_sta_process() (rx.c):

-Updates the sta_info struct that contains
information about this station

-Info about this station, like:
-TX and RX statistics
-PS buffers if we are an AP

struct ieee80211_sta sta;

L

ieee80211_rx_h_data() (rx.c):
-Removes the 802.11 header and passes
up the 802.3 frame

ieee80211_deliver_skb() (rx.c):

-Receives a frame with an Ethernet header
-Decides if the frame has to go up to the stack, or
must be reflected back to the wireless medium
(if we are an AP).

netif_receive_skb() (x.c):
-Delivers the skb to the local stack (kernel)

dev_queue_xmit() (x.c):
-Resends the skb to the wireless medium

1. Beacon Tx path: from ath9k to mac80211

ath_beacon_generate (beacon.c):

-Gets a new Beacon from mac80211, ieee80211_beacon_get
The hardware seems to be in charge of generating Beacon -Sets the proper timestamp and SN in the Beacon
interruption when the proper time comes, and then there -This function seems a good candiate to modify a NoA
is a beacon tasklet defined to handle that interruption, element in the Beacon!
ath_beacon_tasklet -Updates TIM and DTIM, using ieee80211_get_buffered_bc

\ﬂ -Prepares transmission, ath_beacon_setup
[

ath_beacon_tasklet (beacon.c): ath_beacon_setup (beacon.c):
-If the previous beacon is not out, do nothing -Sets up the proper rate to use with the Beacon
-Seems to implement on some Beacon time scheduling to

avoid Beaconing at the same time that other BSSs
-Generates the beacon with ath_beacon_generate
-Inserts the Beacon in the hardware beacon queue

ieee80211_beacon_get (mac80211.h in include/):
\a -Wrapper for ieee80211_beacon_get_tim()
ath9k_hw_txstart (mac.c):

-Writes a register to start the transmission in the
hardware ieee80211_beacon_get_tim (tx.c):

-Generates the beacon

- The actual beacon is contained within an structure called
struct ieee80211_if_ap associated to the interface (struct
ieee80211_sub_if data.

-Adds the TIM with ieee80211_beacon_add_tim

struct beacon parameters (/include/net/cfg80211.h)

u8 *head, *tail; ieee80211_add_beacon (mac80211 cfg.c):

int interval, dtim_period; -This function is called from the configuration interface

int head_len, tail_len; " L—> cfg80211 or wext

Contains pointers to the static parts before and after the -Calls ieee80211_config_beacon that configures the beacon
TIM based on given parameters

But where is the Beacon actually constructed ? This is done by hostapd, next ...

1. Beacon set up: hostapd/wpa_supplicant

* hostpad creates all the STATIC template of the Beacon frame (i.e., SSID, supported rates,
...) and then passes it down to mac80211.

* Thelow level driver (ath9k) is the one in control of the DYNAMIC parts of the Beacon
(SNs, Timestamp, TIM).

hostapd_eid_p2p_manage (p2p_hostapd.c)

-This function builds the P2P IE that goes in the Beacon

-Right now the function only adds the P2P Manageability element within
the P2P IE

-We need to modify this function to also add a Notice of Absence
Element in the Beacon with one NoA Descriptor.

-Then in ath_beacon_generate() from ath9k we have to be able to
access the memory allocated to the NoA element and overwrite it with

ieee802_11_set_beacon (beacon.c)

-This function allocates all the IEs in the HEAD and TAIL parts of the Beacon,
which then will be used by mac80211 to construct the Beacon and pass it E

down to the driver.

-In P2P mode hostapd adds to the Beacon a P2P IE and calls the function
hostapd_eid_p2p_manage

the duration/interval values computed by our algorithm.

* Whenincluding the NoA element in the Beacon, we should reuse the definition already
provided by hostap. Note that the current P2P implementation can already send a P2P
Presence Request frame which contains NoA descriptors.

struct p2p_noa_desc (p2p_i.h)
p2p_build_presence_req (hostap/src/p2p.c) u8 count_type;
-Build a presence request which is an Action frame that u32 duration;
includes a NoA |E u32 interval;
\l/ u32 start_time;

p2p_add_noa (hostap/src/p2p_build.c)
-Adds an NoA element to a struct wpa_buf

1. Beacon Rx path: mac80211

Same as any received frame, until ieee80211_rx_handlers

\17_'

ieee80211_work_init (work.c) ieee80211_iface_work (iface.c)

ieee80211_rx_handlers(rx.c)
-The interesting here is:

ieee80211_rx_h_mgmt ieee80211_work_work (work.c)

ieee80211_sta_rx_queued_mgmt (mime.c)
Processes pending received management frames

‘_W

ieee80211_rx_h_mgmt (rx.c):

-Takes care of received mgmt frames ieee80211_work_rx_queued_mgmt (work.c)
-Calls ieee80211_work_rx_mgmt (work.c) which calls Processes pending received management frames

ieee80211_queue_work to scheduled th actual beacon |

ieee80211_rx_mgmt_beacon (mime.c)

-Implements the logic of receiving a Beacon

-Receives the TIM and sets the WMM parameters

-Decides to generate a PS-Poll if necessary, ieee80211_send_pspoll
Modify to parse the received NoA

ieee80211_queue_work(util.c)
-Adds work to be done in a workiqueue

maintained in struct ieee80211_|local
T

1
I
\V4
Somehow the work inserted in workqueue
gets done ...

Enforce the tx suspension for the time indicated in the NoA. How ????
-Can we write to the AR_NAV register from software ?
-ieee80211_stop_queues (util.c) ?

-ieee80211_wake_queues (util.c) ?

-Can we reused the processing done for the quiet element? Seems
defined but not implemented ...

]
}
]
L}
1
}
]
}
]
L}
1
}
]
}
]
L}
1
}
]
}
]
L}
1
rocessin |
p 8 | \l/
}
]
L}
1
1
[}
}
]
L}
1
}
]
}
]
L}
1
}
]
}
]
L}
1
}
]

struct struct ieee802_11_elems (ieee80211_i.h)

Contains all the Beacon IEs to be parsed
Add NoA element here! ‘ ieee802_11_parse_elems (util.c)

Parses the element in the received Beacon
Modify to also parse a NoA

